

Trends in Photovoltaics

Installation Costs

5.66

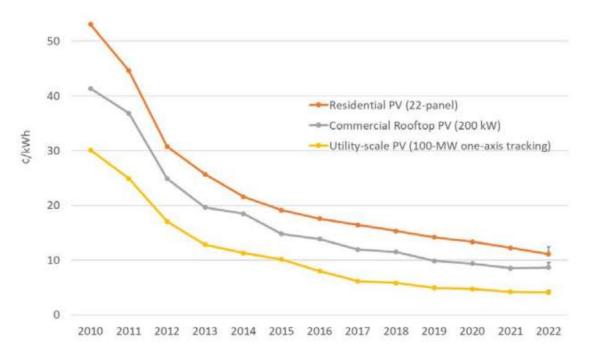
■ Inverter Module

4.79

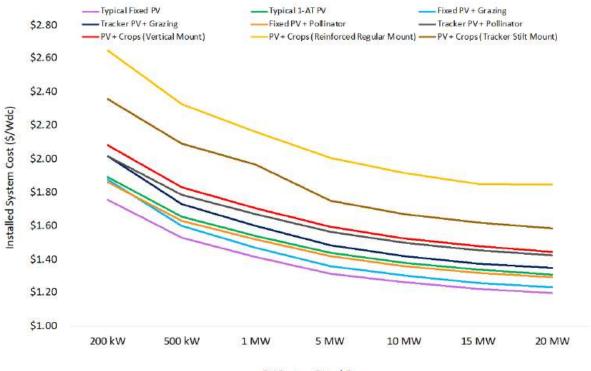
3.29

From 2010 to 2020, **the installed cost** of a utility-scale single axis tracking solar energy system **decreased by 82%**.

2.50
2.25
2.08
1.63
1.16
1.16
1.02
1.01
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
Additional Costs from Model Updates*
Soft Costs - Others (PII, Land Acquisition, Transmission Line, Sales Tax, Overhead, and Profit)
Soft Costs - Install Labor
Hardware BOS - Structural and Electrical Components


Utility-Scale PV, One-Axis Tracker (100 MW)

Source: Feldman, David, Vignesh Ramasamy, Ran Fu, Ashwin Ramdas, Jal Desai, and Robert Margolis. 2021. U.S. Solar Photovoltaic System Cost Benchmark: Q1 2020. Golden, CO: National Renewable Energy Laboratory. NREL/TP-6A20-77324.


Trends in Photovoltaics

Levelized cost of energy (LCOE)

Source: Ramasamy, Vignesh, Jarett Zuboy, Eric O'Shaughnessy, David Feldman, Jal Desai, Michael Woodhouse, Paul Basore, and Robert Margolis. 2022. U.S. Solar Photovoltaic System and Energy Storage Cost Benchmarks, With Minimum Sustainable Price Analysis: Q1 2022. Golden, CO: National Renewable Energy Laboratory. NREL/TP-7A40-83586.

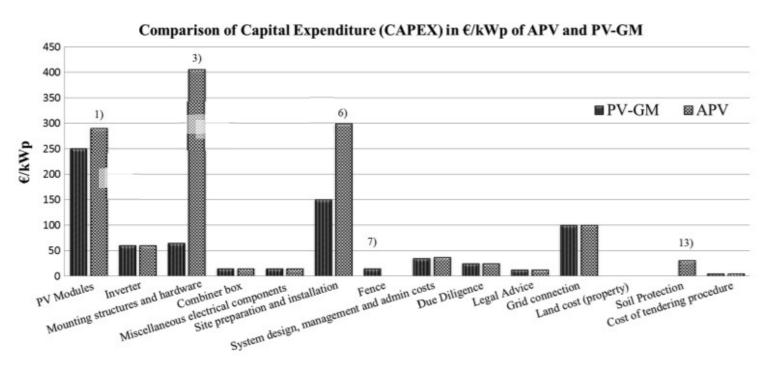
PV installed system costs

PV System Rated Power

Source: Horowitz, Kelsey, Vignesh Ramasamy, Jordan Macknick and Robert Margolis. 2020. Capital Costs for Dual-Use Photovoltaic Installations: 2020 Benchmark for Ground-Mounted PV Systems with Pollinator-Friendly Vegetation, Grazing, and Crops. Golden, CO: National Renewable Energy Laboratory. NREL/TP-6A20-77811.

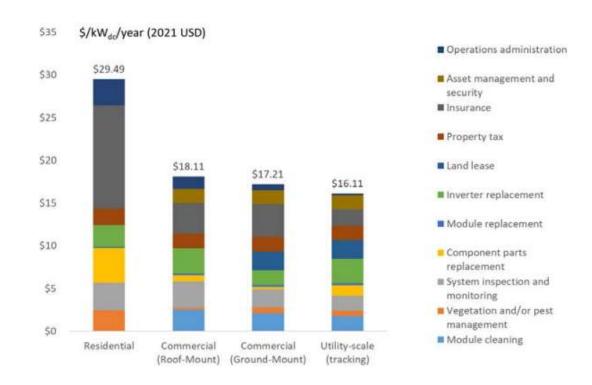
Assessing System Cost

Installed capital costs


- Direct capital costs
- · directly associated with the system, clearly assigned to specific equipment or a component
- Indirect capital costs
- soft costs associated with building the system

Operation and maintenance costs

• ongoing expenses required to maintain, service, and/or replace critical components of the system


Installed Capital Cost (Agrivoltaic vs Traditional)

Source: Schindele, et al. Applied Energy 265 (2020)

Operation and Maintenance Costs

Source: Ramasamy, Vignesh, Jarett Zuboy, Eric O'Shaughnessy, David Feldman, Jal Desai, Michael Woodhouse, Paul Basore, and Robert Margolis. 2022. U.S. Solar Photovoltaic System and Energy Storage Cost Benchmarks, With Minimum Sustainable Price Analysis: Q1 2022. Golden, CO: National Renewable Energy Laboratory. NREL/TP-7A40-83586.

Assessing Economic Effect on Agriculture Operation

Operating costs

- + Electricity generated can be used to power farm operations (**reduced energy costs**).
- + Farmers who lease farmland could see lower rents on agrivoltaic land.
- Solar arrays may increase time/effort needed to operate on farm (increased labor costs).

Income

- + Electricity generated can be sold wholesale to power company (income diversity).
- + Farmers who lease could be paid to maintain land directly under arrays (income diversity).
- +/- Effect on crop yield?

Other

Reduced water usage? Improved crop resilience?

Assessing Land Cost

Agrivoltaic system effects on agricultural operation

- What are the costs and benefits to the agricultural operation?
 - Reduced land in production (-)
 - Increased shading effect on yield and quality, crop specific (+/- ?)
 - Production costs (+/- ?)

Annual Land Cost = $Producer\ price \times \Delta Yield - \Delta Production\ Costs$

Assessing Effect on Yield

Examples of Shading Effects on Crop Yields

Reference	Crop Type	Location	Agrivoltaic System Effect on Yield
Schindele, et al (2020)	Potatoes (organic)	Germany	-11.5% *
Schindele, et al (2020)	Potatoes (conventional)	Germany	-20.0% *
Schindele, et al (2020)	Winter wheat	Germany	-16.1% *
Amaducci et al.(2018)	Corn for grain	Simulation	-17.7%**
Artru et al. (2017)	Wheat	Belgium	-25% to -45%**
* Effect from shading and land loss			
** Effect from shading only			

Incentives

Incentives can come from federal, state and local government, and utility companies.

Example Incentives for Solar Energy Projects on Agricultural land

Name	Description	Eligible Technologies
Business Energy Investment Tax Credit (ITC)	Eligible projects that begin construction after 2021 and before 2025 can receive the full tax credit of 30% .	All renewable energy technologies
Rural Energy for America Program (REAP) Renewable Energy Systems	Grants for up to 50 % of project costs. Loans up to 75% of total eligible project costs.	Small and large solar generation
Net Metering	Receive the retail rate for production up to total consumption and pays avoided cost for excess production.	All renewable energy technologies
Solar Renewable Energy Credits (SRECs) [NJ transitioning to successor program]		All solar energy technologies
Modified Accelerated Cost-Recovery System	5-year depreciation schedule	All solar energy technologies

The Department of Energy provides a comprehensive list of renewable energy incentives:

www.dsireusa.org

Estimating System Energy Production

National Renewable Energy Lab's (**NREL's**) online tool "**PVWatts**" estimates system production and allows customization of

- size of solar array,
- location,
- slope, and
- · orientation.

The PVWatts tool can be found at:

http://pvwatts.nrel.gov

ULD	ULI	2	
	Print	Result	5

DECLIITC

381,767 kWh/Year*
System output may range from 357,678 to 398,183 kWh per year near this location.

Click HERE for more information

Month	Solar Radiation	AC Energy
	(kWh / m ² / day)	(kWh)
January	2.73	18,148
February	3.88	23,006
March	5.23	33,659
April	6.59	39,871
May	6.96	41,661
June	7.47	42,720
July	8.08	47,129
August	6.92	40,442
September	5.80	33,584
October	4.20	26,068
November	3.12	19,417
December	2.44	16,062
Annual	5.29	381,767

Value of Electricity

Understand the farm's **rate structure** to determine any specific charges that will remain after solar system installation.

Rate structures usually include:

- a fixed (basic) charge,
- energy charge,
- · demand charge, and
- possibly others.

Investing in any photovoltaic system involves hedging against future energy prices.

Evaluating Economic Return

System Advisor Model (SAM) from NREL

- A comprehensive model that evaluates critical variables to simulate detailed financial metrics over the energy system's lifetime.
- SAM allows a detailed analysis of renewable energy systems, providing:
 - payback period,
 - net present value, and
 - levelized cost of energy.

SAM is available for download at:

https://sam.nrel.gov

Economic Model Simulation - 50kw agrivoltaic array on 0.3 acres

Economi	ic Model S _l	pecifications	
Cost of System		<u>Incentives</u>	
Total system size (kW DC)	50	SREC value / MWh	\$100.0
Cost / W DC	\$3.00	SREC adder	\$0.0
		Solar Investment Tax Credit	
Cost of installations to owner	\$150,000	(ITC)	30.0%
Operation and maintenance costs /			
kW DC	\$20.00	REAP Grant (25%)	\$37,500
Cost of Land		Financing	
Land needed (acres)	0.3	Debt interest rate (%)	7.0%
Land rental rate / acre (\$)	\$500.0	Debt fraction (%)	50.0%
Energy Production		Debt term (years)	15
Annual production (kWh/yr) per kW			
DC	1,500	<u>General</u>	
		Discount rate for NPV	
Initial annual production (kWh)	75,000	calculations	3.0%
System degradation /Yr	1.00%	Marginal tax rate (corporate)	23.0%
Energy value / kWh	\$0.110	Analysis period (years)	25
Energy price escalation / Yr	0.50%		

Economic Model Simulation - 50kw agrivoltaic array on 0.3 acres

Economic Model Results

Net Revenue (\$)	\$144,500		
Total revenues	\$372,500		
REAP Grant	\$37,500		
Energy production value for 25 yrs (\$0.11/kWh)	\$185,000		
SRECs (\$100/mWh + \$0 adder) over 15 years	\$105,000		
Solar Investment Tax Credit (ITC)	\$45,000	Levelized cost of electricity (LCOE)(\$/kWh)	\$0.12
Revenues/Benefits			
Total costs	\$228,000	Internal rate of return (IRR)(%)	21.59
Financing	\$49,000		
Land rental fee over 25 years	\$4,000	Return on Investment (ROI) (%)	63.49
Maintenance & Op costs over 25 yrs (\$20 / kW DC)	\$25,000		
Purchase price	\$150,000	Payback period (years)	Year
<u>Costs</u>			

Economic Model Simulation – 2 MW agrivoltaic array on 12 acres

Spe	cifications /	Inputs	
Cost of System		Incentives	
Total system size (kW DC)	2,000	SREC value / MWh	\$100.0
Cost / W DC	\$2.00	SREC adder	\$0.0
		Solar Investment Tax Credit	
Cost of installations to owner	\$4,000,000	(ITC)	30.0%
Operation and maintenance costs			
/kW DC	\$20.00	REAP Grant (25%)	\$0
Cost of Land		Financing	
Land needed (acres)	12.0	Debt interest rate (%)	7.0%
Land rental rate / acre (\$)	\$2,500.0	Debt fraction (%)	50.0%
Energy Production		Debt term (years)	15
Annual production (kWh/yr) per			
kW DC	1,500	<u>General</u>	
		Discount rate for NPV	
Initial annual production (kWh)	3,000,000	calculations	3.0%
		Marginal tax rate	
System degradation /Yr	1.00%	(corporate)	23.0%
Energy value / kWh	\$0.050	Analysis period (years)	25
Energy price escalation / Yr	0.50%		

Economic Model Simulation — 2 MW agrivoltaic array on 12 acres

Economic Model Results

Costs			
Purchase price	\$4,000,000	Payback period (years)	Year 3
Maintenance & Op costs over 25 yrs (\$20 / kW DC)	\$1,000,000		
Land rental fee over 25 years	\$750,000	Return on Investment (ROI) (%)	24.2%
Financing	\$1,292,000		
Total costs	\$7,042,000	Internal rate of return (IRR)(%)	19.5%
Revenues/Benefits			
Solar Investment Tax Credit (ITC)	\$1,200,000	Levelized cost of electricity (LCOE)(\$/kWh)	\$0.121
SRECs (\$100/mWh + \$0 adder) over 15 years	\$4,198,000		
Energy production value for 25 yrs (\$0.05/kWh)	\$3,349,000		
REAP Grant	\$0		
Total revenues	\$8,747,000		
Net Revenue (\$)	\$1,705,000		

Review: Key Questions

- Do energy production estimates account for shading, orientation, angle, and temperature?
- Do energy production estimates include annual declines from degradation?
- What is the installed cost per watt?
- Are operations and maintenance costs clearly defined?
- Is the energy value based on average utility rate, or are fixed fees, demand and energy charges considered separately?
- What escalation rate is used to calculate energy savings/revenues? Is it real or nominal?
- What are the impacts (costs and benefits) to the agricultural operation?

Final Considerations

- Agrivoltaics is a major investment that will influence future profitability / viability of farms.
- Use of land consider amount of land
- Other important considerations
 - farm tenancy arrangement
 - decommissioning
 - · alternative investments
- As with any major investment...
 - consult a qualified tax/accounting professional (to ensure eligibility for tax deductions and incentives),
 - and get legal counsel prior to signing any contract.

