

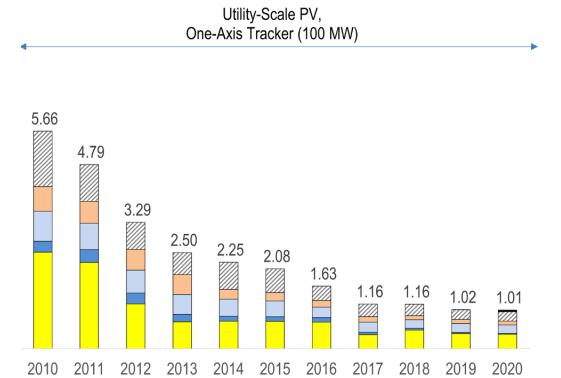
Economics of Agrivoltaics Considerations for Northeast Agricultural Producers

Presented at

Technical Assistance Program for Agrivoltaics

August 13, 2024 **Rutgers Agricultural Research and Extension Center** Bridgeton,

Kevin P. Sullivan, Office of Research Analytics, NJAES, Rutgers University


egon State University Photo Credit: O

Agrivoltaics

Trends in Photovoltaics

From 2010 to 2020, **the installed cost** of a utility-scale single axis tracking solar energy system **decreased by 82%**.

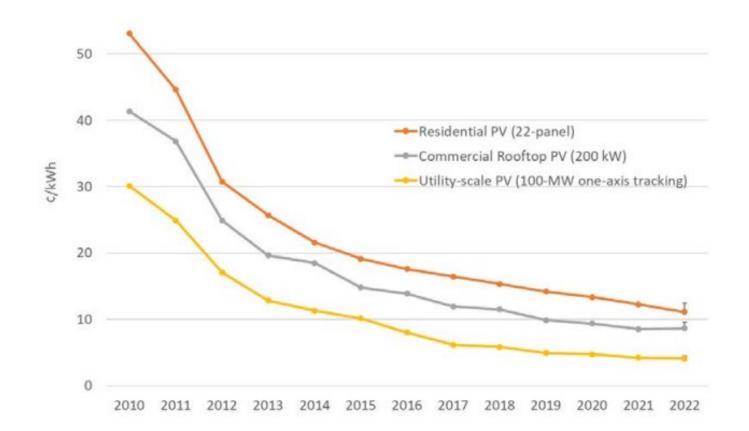
Additional Costs from Model Updates*

Soft Costs - Others (PII, Land Acquisition, Transmission Line, Sales Tax, Overhead, and Profit)
Soft Costs - Install Labor

Economics of Agrivoltaics

■ Hardware BOS - Structural and Electrical Components

- Inverter
- Module

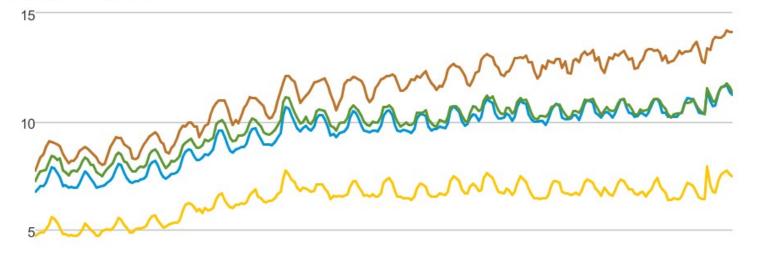

Source: Feldman, David, Vignesh Ramasamy, Ran Fu, Ashwin Ramdas, Jal Desai, and Robert Margolis. 2021. U.S. Solar Photovoltaic System Cost Benchmark: Q1 2020. Golden, CO: National Renewable Energy Laboratory. NREL/TP-6A20-77324.

Trends in Photovoltaics

Economics of Agrivoltaics

Levelized cost of energy (LCOE)

Source: Ramasamy, Vignesh, Jarett Zuboy, Eric O'Shaughnessy, David Feldman, Jal Desai, Michael Woodhouse, Paul Basore, and Robert Margolis. 2022. U.S. Solar Photovoltaic System and Energy Storage Cost Benchmarks, With Minimum Sustainable Price Analysis: Q1 2022. Golden, CO: National Renewable Energy Laboratory. NREL/TP-7A40-83586.



Trends in Photovoltaics

Economics of Agrivoltaics

Average retail price of electricity, United States, monthly

Assessing System Cost

Economics of Agrivoltaics

Installed capital costs

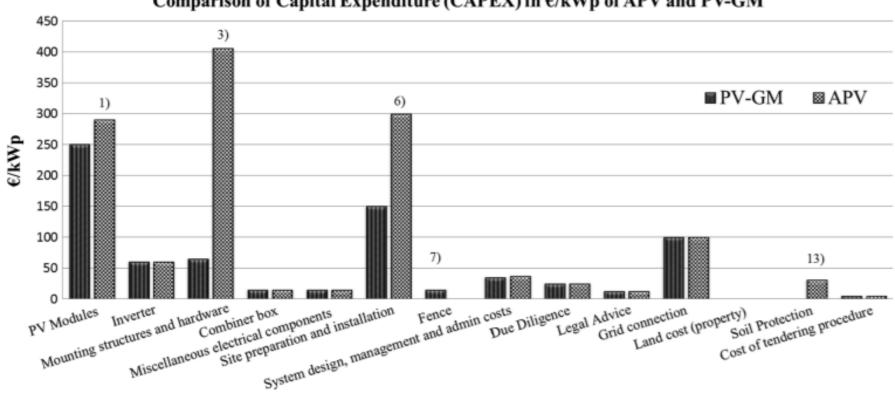
- Direct capital costs
- directly associated with the system, clearly assigned to specific equipment or a component
- Indirect capital costs
- soft costs associated with building the system

Operation and maintenance costs

• ongoing expenses required to maintain, service, and/or replace critical components of the system

Comparing Proposals

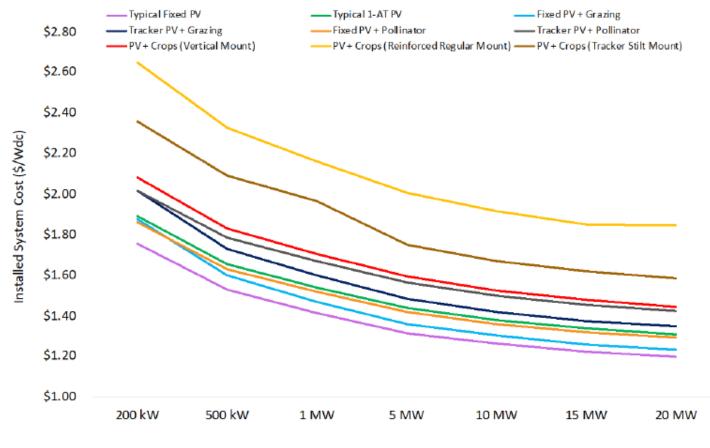
Economics of Agrivoltaics


Conduct a comparison of multiple system costs by calculating the installed cost per watt.

Example of Comparing Multiple System Proposals

Proposal #	1	2	3
System Size(kW)	1,000	900	820
Convert kilowatts to watts	1,000,000	900,000	820,000
Direct Capital Cost	\$1,660,000	\$1,391,600	\$1,460,000
Indirect Capital Cost	\$1,150,000	\$828,400	\$1,300,000
Total Installed Cost	\$2,810,000	\$2,220,000	\$2,760,000
Installed Cost Per Watt (pre-			
incentive)	\$2.81	\$2.47	\$3.37

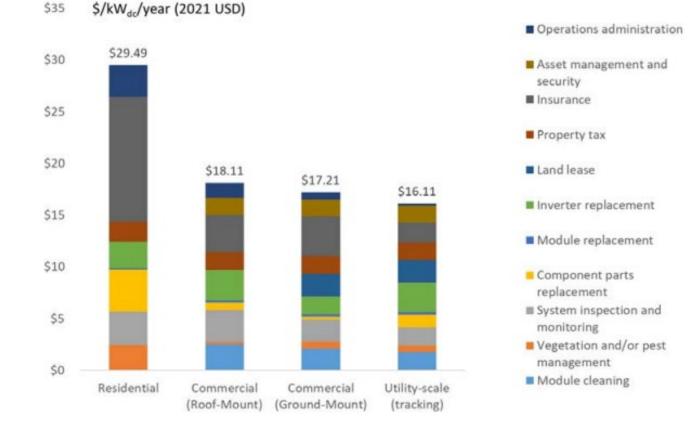
Installed Capital Cost vs Traditional



Comparison of Capital Expenditure (CAPEX) in €/kWp of APV and PV-GM

Source: Schindele, et al. Applied Energy 265 (2020)

PV installed system costs



PV System Rated Power

Source: Horowitz, Kelsey, Vignesh Ramasamy, Jordan Macknick and Robert Margolis. 2020. Capital Costs for Dual-Use Photovoltaic Installations: 2020 Benchmark for Ground-Mounted PV Systems with Pollinator-Friendly Vegetation, Grazing, and Crops. Golden, CO: National Renewable Energy Laboratory. NREL/TP-6A20-77811.

Operation and Maintenance Costs

Source: Ramasamy, Vignesh, Jarett Zuboy, Eric O'Shaughnessy, David Feldman, Jal Desai, Michael Woodhouse, Paul Basore, and Robert Margolis. 2022. U.S. Solar Photovoltaic System and Energy Storage Cost Benchmarks, With Minimum Sustainable Price Analysis: Q1 2022. Golden, CO: National Renewable Energy Laboratory. NREL/TP-7A40-83586.

Assessing Land Cost

Economics of Agrivoltaics

Agrivoltaic system effects on agricultural operation

- What are the costs and benefits to the agricultural operation?
 - **Reduced land** in production (-)
 - Increased shading effect on yield, crop specific (+/-?)
 - Production costs (+/- ?)

Annual Land Cost = *Producer price* $\times \Delta Yield - \Delta Production Costs$

Assessing Effect on Agriculture

Economics of Agrivoltaics

Examples of Shading Effects on Crop Yields

Reference	Crop Type	Location	Agrivoltaic System Effect on Yield
Schindele, et al (2020)	Potatoes (organic)	Germany	-11.5% *
Schindele, et al (2020)	Potatoes (conventional)	Germany	-20.0% *
Schindele, et al (2020)	Winter wheat	Germany	-16.1% *
Amaducci et al.(2018)	Corn for grain	Simulation	-17.7%**
Artru et al. (2017)	Wheat	Belgium	-25% to -45%**
* Effect from shading and land loss			
** Effect from shading only			

Incentives

Economics of Agrivoltaics

Incentives can come from federal, state and local government, and utility companies.

Example Incentives for Solar Energy Projects on Agricultural land

Name	Description	Eligible Technologies	
Business Energy Investment Tax Credit (ITC)	Eligible projects that begin construction after 2021 and before 2025 can receive the full tax credit of 30% .	All renewable energy technologies	
Rural Energy for America Program Renewable Energy Systems	Grants for up to 25 percent of project costs. Loans up to 75 percent of total eligible project costs.	Small and large solar generation	
Net Metering	Receive the retail rate for production up to total consumption and pays avoided cost for excess production.	All renewable energy technologies	
Solar Renewable Energy Credits (SRECs) [NJ transitioning to successor program]	Each 1,000 kilowatt-hour (kWh) of solar generation earns one SREC.	All solar energy technologies	
Modified Accelerated Cost-Recovery System		All solar energy technologies	
The Department of Energy provides a comprehensive list of renewable energy incentives:			

www.dsireusa.org

Estimating System Energy Production

National Renewable Energy Lab's (**NREL's**) online tool "**PVWatts**" estimates system production and allows customization of

- size of solar array,
- location,
- slope, and
- orientation.

The PVWatts tool can be found at:

http://pvwatts.nrel.gov

Print Results

381,767 kWh/Year* System output may range from 357,678 to 398,183 kWh per year near this location. Click HERE for more information.

Month	Solar Radiation (kWh / m ² / day)	AC Energy (kWh)
January	2.73	18,148
February	3.88	23,006
March	5.23	33,659
April	6.59	39,871
Мау	6.96	41,661
June	7.47	42,720
July	8.08	47,129
August	6.92	40,442
September	5.80	33,584
October	4.20	26,068
November	3.12	19,417
December	2.44	16,062
Annual	5.29	381,767

Value of Electricity

Economics of Agrivoltaics

Understand the farm's **rate structure** to determine any specific charges that will remain after solar system installation.

Rate structures usually include:

- a fixed (basic) charge,
- energy charge,
- demand charge, and
- possibly others.

Investing in any photovoltaic system involves hedging against future energy prices.

Evaluating Economic Return

System Advisor Model (SAM) from NREL

- A comprehensive model that evaluates critical variables to simulate detailed financial metrics over the energy system's lifetime.
- SAM allows a detailed analysis of renewable energy systems, providing:
 - payback period,
 - net present value, and
 - levelized cost of energy.

SAM is available for download at:

https://sam.nrel.gov

Economic Model Simulation - 250kw agrivoltaic array on 1.5 acres

Economic Model Specifications				
Cost of System		<u>Incentives</u>		
Total system size (kW DC)	250	SREC value / Mwh	\$90.0	
Cost / W DC	\$3.50	Solar Investment Tax Credit (ITC)	30.0%	
Installed Cost to owner	\$875 <i>,</i> 000			
Operation and maintenance costs / kW DC	\$20.00	Financing		
		Debt interest rate (%)	7.0%	
Cost of Land		Debt fraction (%)	50.0%	
Land needed (acres)	1.5	Debt term (years)	15	
Land rent or opportunity cost / acre (\$)	\$1,500.0			
		<u>General</u>		
Energy Production		Discount rate for NPV calculations	2.5%	
Annual production (kWh/yr) per kW DC	1,400	Marginal tax rate (corporate)	23.0%	
Initial annual production (kWh)	350,000	Analysis period (years)	25	
System degradation /Yr	1.00%			
Energy value / kWh	\$0.110			
Energy price escalation / Yr	0.50%			

Economic Model Simulation - 250kw agrivoltaic array on 1.5 acres

Economic Model Results				
Costs				
Installed Cost	\$875 <i>,</i> 000	Return on investment (ROI) (%)	16.7%	
Maintenance & Op costs over 25 yrs (\$20 / kW DC)	\$125,000	Annualized ROI (%)	0.6%	
Land rental fee over 25 years	\$56 <i>,</i> 000	Payback period (years)	Year 5	
Financing	\$283 <i>,</i> 000			
Total costs	\$1,339,000	Internal rate of return (IRR)(%)	8.6%	
<u>Revenues</u>				
Solar Investment Tax Credit (ITC)	\$263,000	Real (inflation adjuated) costs (\$)	\$1,139,500	
SRECs (\$90/mWh) over 15 years	\$441,000	Real net revenue (\$)	\$123,500	
Energy production value for 25 yrs (\$0.11/kWh)	\$859 <i>,</i> 000	Real ROI (%)	10.8%	
Total revenues	\$1,563,000	Annualized Real ROI (%)	0.4%	
Net revenue (\$)	\$224,000	Levelized cost of electricity (LCOE)(\$/kWh)	\$0.147	

Review: Key Questions

- Do energy production estimates account for shading, orientation, angle, and temperature?
- Do energy production estimates include annual declines from degradation?
- What is the installed cost per watt?
- Are operations and maintenance costs clearly defined?
- Is the energy value based on average utility rate, or are fixed fees, demand and energy charges considered separately?
- What escalation rate is used to calculate energy savings/revenues? Is it real or nominal?
- What are the impacts (costs and benefits) to the agricultural operation?

Final Considerations

- Agrivoltaics is a major investment that will influence future profitability / viability of farms.
- Use of land consider amount of land
- Other important considerations
 - farm tenancy arrangement
 - decommissioning
 - alternative investments
- As with any major investment...
 - consult a qualified tax/accounting professional (to ensure eligibility for tax deductions and incentives),
 - and get legal counsel prior to signing any contract.

111

Thank you!

Kevin Sullivan kps@njaes.rutgers.edu