

New Jersey Agricultural Experiment Station

Agrivoltaics 101

A.J. Both Dept. of Environmental Sciences <u>Agrivoltaics</u> simultaneously combines agriculture with solar energy generation on the same piece of land

Keeps the land in agricultural production

Contributes to the state's renewable energy mandate

Challenges:

- > How to pay for the installation?
- > How to connect to the local utility grid?
- > What agricultural adjustments are needed?
- > Does the electricity generation cover yield reductions?
- > How best to address opposition to agrivoltaics?

Excluded here: Grazing small animals and pollinator habitats

Different types of agrivoltaic systems

Fixed-tilt (low to the ground, South facing)
Seasonally adjustable tilt (manual, on posts, South facing)
Single-axis trackers (North-South rows, various post heights)
Dual-axis trackers (always pointed perpendicular to the Sun)
Vertical bifacial (no moving parts, bifaciality factor)
Elevated fixed-tilt or trackers on support structures

Other photovoltaic options (without using agricultural land):
Mounted on (shade) structures (e.g., barns, greenhouses)
Floating on (irrigation) ponds

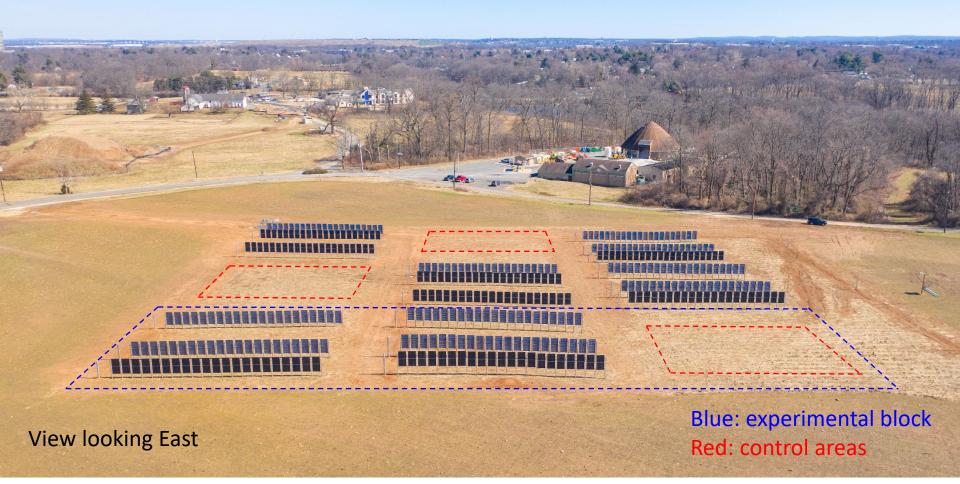
Fixed-tilt

Seasonally adjustable tilt

Single-axis trackers

Dual-axis trackers

Vertical bifacial


Elevated agrivoltaics

Animal Farm, New Brunswick, NJ

Vertical bifacial panels

170 kW_{DC}: Grazing large animals and forage production. Three randomized blocks, each with a control area, three rows with 61 cm (2 feet) clearance height, and three rows with 1.22 m (4 feet) clearance height. Row spacing: 6.1 or 12.2 m (20 or 40 feet). Each row has 21 vertical bifacial panels (oriented East or West).

RAREC, Upper Deerfield, NJ

100 100 100

Bifacial panels

Blue: experimental block Red: control areas

View looking East

255 kW_{DC} installed, 48.6 kW_{DC} grid-connected, single-axis trackers with a pivot point 2.4 m (8 feet) above ground level: Staple and vegetable crop production. Three randomized blocks, each with a control area, three rows with single rows of panels, and three rows with double rows of panels. Row spacing: 10.4 m (34 feet).

Snyder Farm, Pittstown, NJ

Jersey Central[®]

Power & Light

A FirstEnergy Company

95 kW_{DC} installed, 82.4 kW_{DC} grid-connected, single-axis trackers with a pivot point 2.4 m (8 feet) above ground level): hay production. Two treatment blocks, each with a control area and five rows with single rows of panels. Row spacing: 9.8 m (32 feet).

Key lessons learned/challenges encountered

- Every utility has its own procedures/timelines
 The local grid capacity may not be large enough
 Grid capacity information is not always easy to obtain
 Grid upgrades are very expensive and time-consuming
 Price per watt for each system (For our VBF > \$4/W_{DC})
 Consider trackers that can rotate ±90° from horizontal
 East or West orientation of VBF panels?
 Need for contingency funds (be aware of rocky fields)
- Design-build projects require good communication and trust between developer and customer
- > Operating large agricultural equipment near an agrivoltaic system can be tricky and will likely slow the process down

Key design and construction challenges

- Few design tools available for agrivoltaics
- > Hiring an experienced developer/contractor
- > Keeping the developer/contractor focused on agriculture
- > Time required to get permits/approvals
- Dealing with delays in the supply chain
- Planning for future replacement/decommissioning
- > Design-build projects can be time consuming (better outcome?)

Highlighted construction challenges

Soil compaction during construction Recommendation: Use tracked vehicles only, and let soil dry before driving on it

The Meable and the

When backfilling trenches, put topsoil back on top

Unprotected conduit risers

Incorrect placement of in-ground conduit boxes: Obstruction for jarming equipment

New Jersey Agricultural Experiment Station

Thank you!! Questions?

A.J. Both both@sebs.rutgers.edu